Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Type of study
Publication year range
1.
Plants (Basel) ; 13(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38475457

ABSTRACT

Orchids are among the plants most threatened by anthropic impact and environmental changes. Therefore, all known orchid species are protected in several countries by regional, national and international legislation. Several studies have cast doubts on the effectiveness of legislation to ensure the protection of wild orchids. We assessed the vitality of four orchid populations in a coastal area in Northern Italy, by monitoring the vegetative and reproductive traits of the orchid populations growing both in the protected sites comprising the Natura 2000 network, and in non-protected sites. We also monitored the level of environmental threat to orchid vitality. The early-flowering deceptive species (Ophrys sphegodes and Anacamptis morio) exhibited high vegetative vitality and experienced similar levels of environmental threat in the protected and non-protected areas. However, their reproductive success was strongly jeopardized, probably by a failed pollination that impeded the fruit set. The late-flowering, partially or totally rewarding species (Anacamptis pyramidalis and Anacamptis coriophora) were more strongly impacted by spring mowing and ungulate herbivory and alien species. Only for A. coriophora were the herbivory and alien species invasions lower at the protected vs. non-protected sites, which ensured a higher population vitality at the protected sites. We conclude that the environmental protection in our study area is ineffective for preserving orchids without targeted actions against specific environmental threats.

2.
Conserv Biol ; : e14233, 2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38155511

ABSTRACT

Conservation translocations are becoming common conservation practice, so there is an increasing need to understand the drivers of plant translocation performance through reviews of cases at global and regional levels. The establishment of the Italian Database of Plant Translocation (IDPlanT) provides the opportunity to review the techniques used in 186 plant translocation cases performed in the last 50 years in the heart of the Mediterranean Biodiversity Hotspot. We described techniques and information available in IDPlanT and used these data to identify drivers of translocation outcomes. We tested the effect of 15 variables on survival of translocated propagules as of the last monitoring date with binomial logistic mixed-effect models. Eleven variables significantly affected survival of transplants: life form, site protection, material source, number of source populations, propagation methods, propagule life stage, planting methods, habitat suitability assessment, site preparation, aftercare, and costs. The integration of vegetation studies in the selection of suitable planting sites significantly increased the success of translocation efforts. Although posttranslocation watering had a generally positive effect on translocation outcome, other aftercare techniques did not always increase transplant survival. Finally, we found that how funds were spent appeared to be more important than the actual amount spent. Plant translocations in Italy and in the Mediterranean area should account for the complexity of speciation, gene flow, and plant migrations that has led to local adaptations and has important implications for the choice and constitution of source material.


Mejores prácticas, errores y perspectivas tras medio siglo de reubicaciones botánicas en Italia Resumen Las reubicaciones son una práctica cada vez más común en la conservación, por lo que hay una necesidad creciente por entender los factores del desempeño de las reubicaciones botánicas por medio de la revisión de casos regionales y globales. La creación de la Italian Database of Plant Translocation (IDPlanT) proporciona una oportunidad para revisar las técnicas usadas para los casos de reubicación de 186 plantas realizados durante los últimos cincuenta años en el centro del punto caliente de biodiversidad mediterránea. Describimos las técnicas y la información disponible en IDPlanT y usamos estos datos para identificar los factores involucrados en los resultados de las reubicaciones. Usamos modelos logísticos binomiales de efectos mixtos para analizar el efecto de 15 variables sobre la supervivencia de los propágulos reubicados a partir de la última fecha de monitoreo. Once de las variables afectaron de manera significativa la supervivencia de las plantas: forma de vida, protección del sitio, fuente de materiales, cantidad de poblaciones originarias, método de propagación, etapa de vida del propágulo, método de siembra, evaluación de idoneidad del hábitat, preparación del sitio, cuidados posteriores y costos. La integración de los estudios botánicos a la selección de los sitios idóneos para plantar aumentó el éxito de los esfuerzos de reubicación. Aunque el riego posterior a la reubicación tuvo un efecto positivo general sobre el resultado, las otras técnicas de cuidado posterior no siempre incrementaron la supervivencia de la planta reubicada. Por último, descubrimos que parece ser más importante cómo se utilizan los fondos que la cantidad actual empleada. Las reubicaciones botánicas en Italia y en el área del Mediterráneo deben considerar lo complejo de la especiación, el flujo génico y la migración botánica que han derivado en adaptaciones locales y que han tenido implicaciones importantes para la elección y constitución del material de origen.

3.
Article in English | MEDLINE | ID: mdl-37107873

ABSTRACT

The etiopathogenesis of amyotrophic lateral sclerosis (ALS) is still largely unknown, but likely depends on gene-environment interactions. Among the putative sources of environmental exposure are air pollutants and especially heavy metals. We aimed to investigate the relationship between ALS density and the concentration of air pollution heavy metals in Ferrara, northern Italy. An ecological study was designed to correlate the map of ALS distribution and that of air pollutants. All ALS cases diagnosed between 2000 and 2017 (Ferrara University Hospital administrative data) were plotted by residency in 100 sub-areas, and grouped in 4 sectors: urban, rural, northwestern and along the motorway. The concentrations of silver, aluminium, cadmium, chrome, copper, iron, manganese, lead, and selenium in moss and lichens were measured and monitored in 2006 and 2011. Based on 62 ALS patients, a strong and direct correlation of ALS density was observed only with copper concentrations in all sectors and in both sexes (Pearson coefficient (ρ) = 0.758; p = 0.000002). The correlation was higher in the urban sector (ρ = 0.767; p = 0.000128), in women for the overall population (ρ = 0.782, p = 0.000028) and in the urban (ρ = 0.872, p = 0.000047) population, and for the older cohort of diagnosed patients (2000-2009) the assessment correlated with the first assessment of air pollutants in 2006 (ρ = 0.724, p = 0.008). Our data is, in part, consistent with a hypothesis linking copper pollution to ALS.


Subject(s)
Air Pollutants , Amyotrophic Lateral Sclerosis , Metals, Heavy , Male , Humans , Female , Amyotrophic Lateral Sclerosis/epidemiology , Amyotrophic Lateral Sclerosis/etiology , Copper , Italy/epidemiology , Metals, Heavy/analysis
4.
Plants (Basel) ; 12(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36679088

ABSTRACT

Salicornia is a highly taxonomically problematic genus due to the reduced morphological observable characters. Ten Eurasian species are currently recognized: S. alpini, S. europaea, S. fruticosa, S. hispanica, S. lagascae, S. perennans, S. perennis, S. persica, S. procumbens, and S. pruinosa. In addition, eleven subspecies are accepted, mainly based on their distribution areas. Along the Venetian coasts and in Sardinia, in the past, an endemic species called S. veneta was recognized, but this name was later synonymized with S. procumbens subsp. procumbens. The aim of the present research is investigating different Italian Salicornia populations by a molecular point of view, using the nuclear ribosomal external transcribed spacer ETS and the plastid psbA-trnH intergenic spacer. A particular focus is on the comparison between Venetian (including those occurring in locus classicus of S. veneta) and Sardinian S. procumbens and other Italian populations of this species. The molecular analyses based on the plastid marker highlight that the Italian S. procumbens populations form two well distinct groups. In particular, some of the Venetian (Locus classicus of S. veneta) and all the Sardinian specimens are genetically distinct (=plastid haplotype 1) from the other investigated populations (=plastid haplotype 2). This indicates that the psbA-trnH haplotype 1 glassworts represent a distinct entity, which we suppose to coincide with the former S. veneta. Therefore, we suggest to recognize this taxonomic entity at the subspecies rank, as S. procumbens subsp. veneta comb. and stat. nov. However, contrary to the results found with the plastid psbA-trnH intergenic spacer, the ETS locus does not show a separation into two distinct clades for S. procumbens, probably due to a different evolution of the two loci. Nevertheless, in the ETS phylogenetic reconstruction, the Sardinian specimens (=ribotypes 2 and 3) are placed, together with a Moroccan sample, in a subclade separated from all the other S. procumbens. These results suggest that the Sardinian populations can represent a subspecies/incipient speciation process, probably due to geographic isolation. In the light of this, morphometric analyses (k-means, MANOVA, PCA, DA, and Box-Plot) have been carried out on the Sardinian and Venetian populations to verify if this distinction is detectable also by a morphological point of view. The morphometric analyses highlight the existence of two groups, concerning both the nuclear and plastid trees. Six characters were found to be diagnostic.

5.
J Environ Manage ; 295: 113092, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34182336

ABSTRACT

Recycling phosphorus (P) is crucial to meet future P demand for crop production. We investigated the possibility to use calcium phosphite (Ca-Phi) waste, an industrial by-product, as P fertilizer following the oxidation of phosphite (Phi) to phosphate (Pi) during green manure (GM) cropping in order to target P nutrition of subsequent maize crop. In a greenhouse experiment, four GM crops were fertilized (38 kg P ha-1) with Ca-Phi, triple super phosphate (TSP) or without P (Control) in sandy and clay soils. The harvested GM biomass (containing Phi after Ca-Phi fertilization) was incorporated into the soil before maize sowing. Incorporation of GM residues containing Phi slowed down organic carbon mineralization in clay soil and mass loss of GM residues in sandy soil. Microbial enzymatic activities were affected by Ca-Phi and TSP fertilization at the end of maize crop whereas microbial biomass was similarly influenced by TSP and Ca-Phi in both soils. Compared to Control, Ca-Phi and TSP increased similarly the available P (up to 5 mg P kg-1) in sandy soil, whereas in clay soil available P increased only with Ca-Phi (up to 6 mg P kg-1), indicating that Phi oxidation occurred during GM crops. Accordingly, no Phi was found in maize biomass. However, P fertilization did not enhance aboveground maize productivity and P export, likely because soil available P was not limiting. Overall, our results indicate that Ca-Phi might be used as P source for a subsequent crop since Phi undergoes oxidation during the preliminary GM growth.


Subject(s)
Manure , Phosphites , Agriculture , Calcium , Fertilization , Fertilizers/analysis , Nitrogen/analysis , Soil , Zea mays
6.
Sci Total Environ ; 783: 147012, 2021 Aug 20.
Article in English | MEDLINE | ID: mdl-33872894

ABSTRACT

Soil enzymatic activity was assessed in the Stelvio Pass area (Italian Central Alps) aiming to define the possible effects of climate change on microbial functioning. Two sites at two different elevations were chosen, a subalpine (2239 m) and an alpine belt (2604-2624 m), with mean annual air temperature differing by almost 3 °C, coherent with the worst future warming scenario (RCP 8.5) by 2100. The lower altitude site may represent a proxy of the potential future situation at higher altitude after the upward shift of subalpine vegetation due to climate change. Additionally, hexagonal open top chambers (OTCs) were installed at the upper site, to passively increase by about 2 °C the summer inner temperature to simulate short term effects of warming before the vegetation shift takes place. Soil physicochemical properties and the bacterial and fungal abundances of the above samples were also considered. The subalpine soils showed a higher microbial activity, especially for hydrolytic enzymes, higher carbon, ammonium and hydrogen (p < 0.001) contents, and a slightly higher PO4 content (p < 0.05) than alpine soils. Bacterial abundance was higher than fungal abundance, both for alpine and subalpine soils. On the other hand, the short term effect, which increased the mean soil temperature during the peak of the growing season in the OTC, showed to induce scarcely significant differences for edaphic parameters and microbial biomass content among the warmed and control plots. Using the manipulative warming experiments, we demonstrated that warming is able to change the enzyme activity starting from colder and higher altitude sites, known to be more vulnerable to the rising temperatures associated with climate change. Although five-years of experimental warming does not allow us to make bold conclusions, it appeared that warming-induced upwards vegetation shift might induce more substantial changes in enzymatic activities than the short-term effects, in the present vegetation context.


Subject(s)
Climate Change , Soil , Biomass , Italy , Soil Microbiology , Temperature
7.
Chemosphere ; 108: 388-95, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24630254

ABSTRACT

Monitoring air quality by using living organisms as biomonitors has received increasing attention in recent years. However, rather few studies were based on the concomitant use of passive biomonitoring (based on the different sensitivity of living organisms to air pollution) and active biomonitoring (based on their capacity to accumulate pollutants in the tissues). We carried out a repeated survey of an urban area in Northern Italy, with the objective of comparing temporal trends of different kinds of air pollutants with bioindication (passive biomonitoring) and bioaccumulation (active biomonitoring) techniques. During a five-year interval, temporal patterns of moss metal concentrations underwent significant changes probably due to intercurring variations in the importance of different pollution sources. Nitrogen (N) concentration in moss tissues also decreased and was paralleled by increasing diversity of epiphytic lichens. Increasing δ(15)N in moss tissues suggested a higher contribution of oxidized N species compared with reduced N species.


Subject(s)
Air Pollutants/analysis , Bryophyta/metabolism , Environmental Monitoring/methods , Lichens/metabolism , Metals/analysis , Air Pollutants/metabolism , Air Pollution , Bryophyta/chemistry , Italy , Lichens/chemistry , Metals/metabolism , Nitrogen/analysis , Nitrogen/metabolism
8.
J Environ Manage ; 134: 56-62, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24463849

ABSTRACT

Reed (Phragmites australis) is widespread in aquatic habitats in Europe where it plays an important ecological role, especially as stabilizer of lake and river shores and as filter against pollutants. Reed is also abundant in ecotones towards terrestrial habitats, especially fen meadows, where its expansion can out-compete rare slowly-growing fen species. Therefore, defining appropriate guidelines for managing reed in wetlands has to consider differences in the ecological roles that reed plays in different wetland habitats. In a small pre-alpine lake in N Italy, we mowed reed stands in three plant communities located along a transect from the lake shore to the periphery. In each community, three areas were subjected to reed mowing in late winter, as traditionally done in the past. Three additional areas were subjected to mowing in winter and summer, while three areas served as un-treated controls. Summer mowing was carried out in August, when the nesting period of birds was concluded. Mowing in winter did not affect reed aboveground biomass (RAB) in any community but enhanced the efficiency of removing nutrients by reducing litter accumulation in the soil. Mowing in winter and summer only slightly decreased RAB in the riparian community, not at all in the intermediate community but significantly diminished RAB in fen meadows. Phosphorus deficiency and/or reduced competition with other species probably accounted for RAB reduction in fen meadows. In conclusion, winter mowing can be overall recommended for preventing eutrophication of littoral habitats while summer mowing is advisable for preventing reed expansion in fen meadows. However, the timing of summer mowing has to be defined considering all requirements needed for optimal management of each individual site.


Subject(s)
Conservation of Natural Resources/methods , Poaceae , Ecosystem , Eutrophication , Italy , Seasons , Wetlands
9.
New Phytol ; 179(1): 142-154, 2008.
Article in English | MEDLINE | ID: mdl-18373651

ABSTRACT

Nitrogen and phosphorus were added experimentally in a bog in the southern Alps. It was hypothesized that alleviating nutrient limitation will increase vascular plant cover. As a consequence, more carbon will be fixed through higher rates of net ecosystem CO(2) exchange (NEE). The vascular cover did increase at the expense of Sphagnum mosses. However, such vegetation changes were largely independent of the treatment and were probably triggered by an exceptional heatwave in summer 2003. Contrary to the tested hypothesis, NEE was unaffected by the nutrient treatments but was strongly influenced by temperature and water-table depth. In particular, ecosystem respiration in the hot summer of 2003 increased dramatically, presumably owing to enhanced heterotrophic respiration in an increased oxic peat layer. At the end of the experiment, the Sphagnum cover decreased significantly in the nitrogen-fertilized treatment at hummock microhabitats. In the long term, this will imply a proportionally greater accumulation of vascular litter, more easily decomposable than the recalcitrant Sphagnum litter. As a result, rates of carbon fixation may decrease because of stimulated respiration.


Subject(s)
Carbon Dioxide/metabolism , Fertilizers , Hot Temperature , Photosynthesis , Sphagnopsida/growth & development , Wetlands , Nitrogen/pharmacology , Phosphorus/pharmacology , Rain , Sphagnopsida/drug effects , Sphagnopsida/metabolism
10.
Oecologia ; 130(3): 476-483, 2002 Feb.
Article in English | MEDLINE | ID: mdl-28547055

ABSTRACT

Two subalpine dwarf-shrub heath communities with differing levels of soil nutrient availability were subjected to a 3-year experimental manipulation, including nutrient addition or removal of one of the two co-dominant species from each community. The main objective of our study was to assess the relative importance of interspecific competition versus nutrient limitation in relation to soil fertility. We also aimed to investigate if and to what extent current-year shoot size, leaf-based rates of net photosynthesis and foliar nutrient status accounted for the observed changes in the aboveground biomass of the shrubs. At the end of the experiment, neighbour removal increased the aboveground biomass of all shrubs, especially in the more fertile community, while fertilization did not. We concluded that: (1) competition is more effective than nutrient limitation in structuring the vegetation of subalpine heathlands; and (2) competition intensity is stronger in the more fertile community. The observed patterns of variations in aboveground biomass were not consistently related to net photosynthetic rates, size of individual shoots and foliar nutrient status. Hence, we also concluded that the growth response of dwarf shrubs to altered environmental conditions is primarily determined by developmental plasticity.

SELECTION OF CITATIONS
SEARCH DETAIL
...